

How should we measure the digital economy?

Avinash (Avi) Collis

Assistant Professor, The University of Texas at Austin Digital Fellow, Stanford Digital Economy Lab & MIT IDE

www.avinash.info

How Are We Doing?

"...a measure for standard of living: average real gross domestic product (GDP) per capita" – Boston Fed

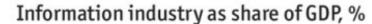
"Productivity is the most important determinant of the standard of living" – Forbes

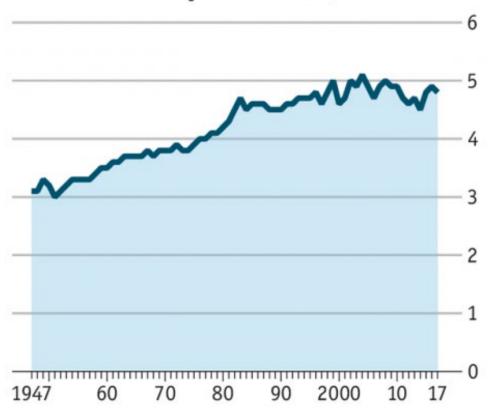
GDP is a measure of production, not well-being!

"The welfare of a nation can scarcely be inferred from a measurement of national income as defined [by the GDP.]"
- Simon Kuznets, 1934

IT & GDP

Explosion of free digital goods





United States

Free digital goods substituting paid goods

Smartphones substituted

- Camera
- Alarm Clock
- Music Player
- Calculator
- Computer
- Land Line
- Game Machine
- Movie Player
- Recording Device
- Video Camera

Plus:

- Data plan
- GPS Map and directions
- Web Browser
- E-book reader
- Fitness monitor
- Instant messaging

Application	\$ 2018	Original Device Name	Year*	MSRP	\$ 2018
1 Video conferencing	Free	Compression Labs VC	1982	\$250,000	\$639,039
2 GPS	Free	TI 4100 NAVSTAR	1982	\$119,900	\$509,186
3 Digital voice recorder	Free	Sony PCM	1978	\$2,500	\$9,458
4 Digital watch	Free	Seiko 35SQ Astron	1969	\$1,250	\$8,402
5 10 MP camera	Free	Canon EOS-1Ds	2002	\$7,999	\$10,968
6 Scanner	Free	HP ScanJet Plus	1989	\$1,595	\$3,173
7 Video player	Free	Toshiba V-8000	1981	\$1,245	\$3,378
8 Video camera	Free	RCA CC010	1981	\$1,050	\$2,849
9 Music player	Free	Sony CDP-101 CD player	1982	\$900	\$2,301
10 Encyclopedia	Free	Compton's CD Encyclopedia	1989	\$750	\$1,492
11 Videogame console	Free	Atari 2600	1977	\$199	\$810
Tota		100			\$1,191,056
* Year of launch					rk

Some of these goods have ads

Advertising revenues are generally not proportional to consumer surplus and may reflect only a small share of it. (Spence and Owen 1977)

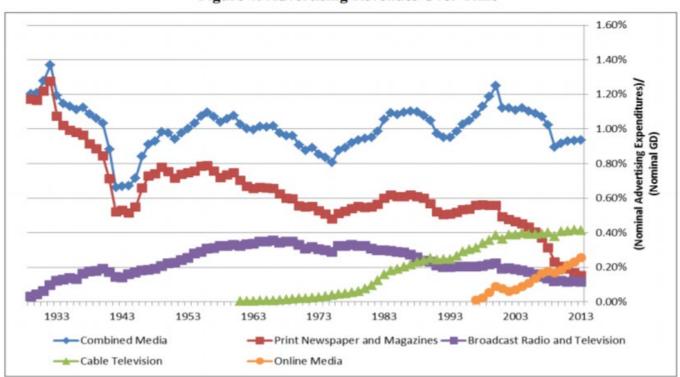


Figure 4: Advertising Revenues Over Time

Ref: Nakamura, Samuels and Soloviechik (2017)

Our Approach

Estimate Consumer Welfare Directly

- Key techniques: Online Choice Experiments and Lotteries
 - 1. Single Binary Discrete Choice Experiments
 - 2. Becker-DeGroot-Marschak Lotteries
 - 3. Best-Worst Scaling

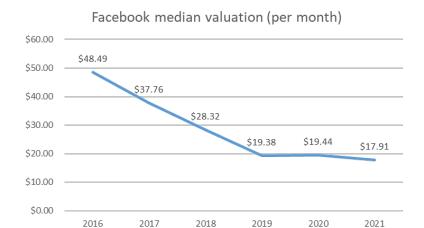
Both with and without incentive compatibility

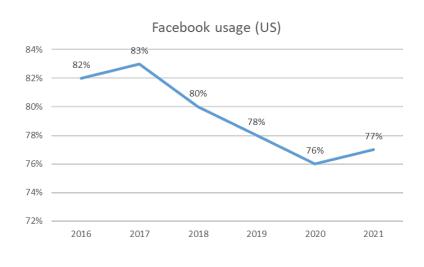
Single Binary Discrete Choice (SBDC) Experiments

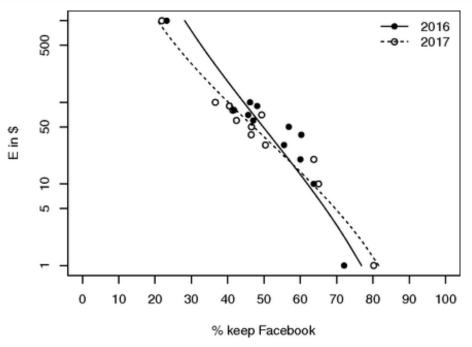
Ask consumers to make a single choice among two options:

- ☐ Keeping the good
- ☐ Give up the good and receive \$W in return
- Prices \$W systematically varied between consumers
- Seek to reduce error by increasing quantity of responses
 - Aggregation of data leads to demand curves
 - Can be done with or without incentive compatible design

Using Massive Online Choice Experiments to Measure Changes in Well-being (Avinash Collis, Erik Brynjolfsson & Felix Eggers), PNAS 2019


Estimating welfare gains from Facebook


- SBDC experiments on a representative sample of US internet population
- Enforcing incentive compatibility:
 - Randomly pick some respondents and fulfill their selection
 - If user chose to keep Facebook, do nothing
 - If user chose to give up Facebook, then
 - 1. Ask them to give it up for 1 month
 - 2. After 1 month, verify whether they have used Facebook in the past month and reward them with \$W



Estimating welfare gains from Facebook (2016-21)

Heterogeneity in valuation

Higher valuations for people with

- More time spent on Facebook
- More friends they have
- More frequent posting
- · More videos watched
- Female
- Older
- · Less use of Instagram or Youtube

Brussels, 10-11 November 2022 #Statistics4Future

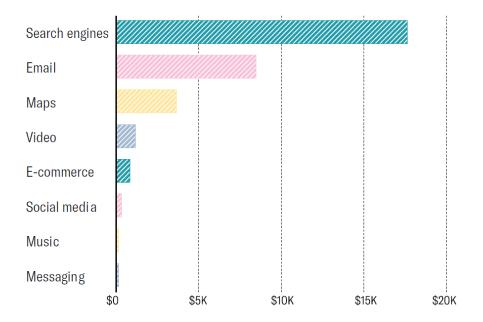
Accounting for the benefits from digitization

- Two features of the Digital Economy:
 - 1. Free goods
 - E.g. Facebook, Wikipedia
 - 2. New goods
 - E.g. Smartphones
- Welfare gains/ benefits from free goods and new goods are poorly captured in GDP
- We introduce a new metric, we call "GDP-B" to account for the benefits of free goods and new goods

GDP-B: Accounting for the Value of New and Free Goods in the Digital Economy Avinash Collis, Erik Brynjolfsson, Erwin Diewert, Felix Eggers & Kevin Fox, 2022

Facebook's contribution to GDP-B

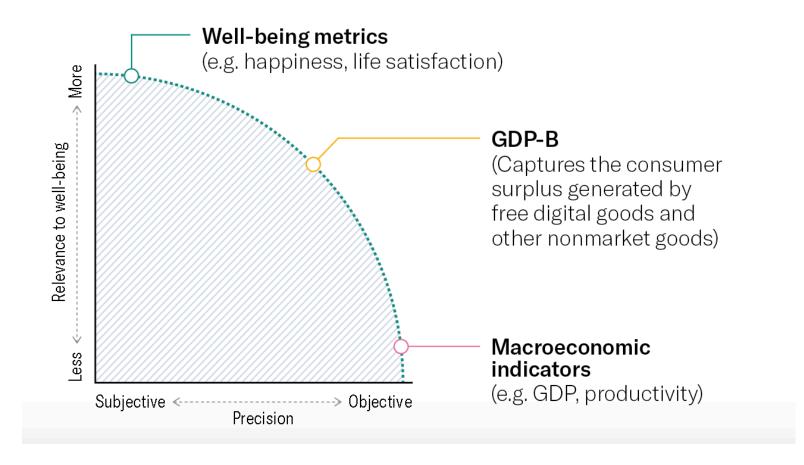
	GDP-B
	growth
Percentage Points, 2003-2017	0.68
Per year	0.05
GDP-B Growth per year without Facebook (i.e. GDP growth)	1.83
GDP-B Growth per year with Facebook	1.87



Most popular categories of digital goods

Consumer Surplus Effect by Digital Category

Consumers value some digital categories more than others. Search engines, email, and maps, for example, have no comparable off-line substitutes, propelling them to the top of the list.


Other popular digital goods in Europe

Service	Median WTA/ month			
WhatsApp	€535.73	<u>Interviews</u> :		
Facebook	€96.80	"Whatapp is the only communication tool I use		
Maps	€59.16	to contact my friends here. Without it, I can do nothing."		
Instagram	€6.79	"WhatsApp is crucial. I use the app every hour		
Snapchat	€2.17	of the day to keep in touch with friends and family but also to discuss group projects or		
LinkedIn	€1.52	things about my work. I really need to keep access to this app. There is also not a very		
Skype	€0.18	suitable alternative."		
Twitter	€0.00			

A dashboard of metrics instead of 1 single number

Next Steps

- Expanding the data collection to include a bigger basket of goods (digital goods, representative goods from the CPI basket, other non market goods)
- Partnerships with major online platforms to conduct large scale choice experiments
- Partnerships with Statistical Agencies to scale up data collection

Conclusion

- 1. GDP, developed in 1930s, remains the de facto metric of economic growth.
- 2. Conceptually, consumer surplus is a better metric of economic well-being.
- 3. Massive online choice experiments have the potential to reinvent and significantly supplement the measurement of economic welfare.
- GDP-B captures the economic welfare gains from new and free digital goods
- 5. We need a dashboard of metrics (subjective well-being, GDP-B, GDP) to inform decision making by policymakers and managers

THANK YOU!

